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I. INTRODUCTION

The .JANNAF Propulsion Systems Hazards Subcommittee sponsored a
Workshop entitled "Model Predictions of the Piston-Driven-Compaction Experiment"
which was held on 25-26 October 1988 in conjunction with the 25th JANNAF
Combustion Meeting at NASA/Marshall Space Flight Center, Huntsville, AL. Tle
general problem of interest is the transition to detonation in confined granular
energetic material. This workshop is the third in a series of JANNAF PSHS
workshops which have attempted to examine various aspects of the problem. The
first one was held on 11-12 July 1985 in the Albuquerque Convention Center,
Albuquerque NM, immediately preceding the Eighth Symposium (International) on
Detonation, 15-19 July 1985. The objective was to assess our knowledge (or
ignorance) of the mechanical properties exhibited by compacted granular material.
Discussion concentratcd on quasi-static compaction, as well as dynamic compaction
and small amplitude wave propagation which may involve strain rate effects.
Reference [i] is the workshop summary.

The second workshop was held on 23 October 1986 at the NASA / Langley
Research Center in Hampton VA, in conjunction with the 23rd JANNAF
Combustion Meeting, 20-24 October 1986. The specific objective was to gather
eight modelers together and compare predictions to three pre-assigned "homework"
problems which were based on constant-velocity-piston compaction of a column of
confined granular material. The broader objective was an elementary assessment
of the predictive capability of a number of computer codes used in the modeling
of Deflagration-to-Detonation Transition (DDT). Of course, success in predicting
compaction wave speed is only a neccessary condition and not sufficient proof
that a DDT prediction will be accurate. The good news from this workshop was
that most of the predictions were close to each other and to the "correct"
answers which were Taken from experimental compaction wave speed data
obtained by Hf. W. Sandusky (NSWC/WO) in his Piston-Driven-Compaction (PDC)
apparatus. The bad news was that compaction wave speed is a rather forgiving
parameter; models which predict nearly the same wave speed were observed to
predict different values of pressure (or stress) in ,he aggregate. It was concluded
that on tne basis of compaction wave speed, there is no way to distinguish the
influence of (a) strain-rate sensitivity during dynamic compaction, (b) compaction
wave-induced reaction of solid material, and (c) friction between the sliding
aggregate and the wall boundary. Reference [2] is the workshop summary.

The current workshop (Oct 1988) is an attempt to confront a problem closer
to "transition", without requiring computations of a full high order detonation.
The aim is to focus on wave behavior in the "intermediate regime", as the strong
compaction wave accelerates to speeds in the range of low velocity detonation.
When constructing a modeling exercise which is to predict the behavior of an
experiment, an absolute necessity is the ability to uniquely specify the boundary
conditions and/or source terms which drive the problem. If the problem is posed
such that various combinations of boundary values and source terms could be
selected as reasonable, then comparison of model predictions will be meaningless.
This is the difficulty associated with experiments based on convective ignition -
specifying the spatial distribution and time-history of mass flux and energy
content of the ignitor system. It was felt that Sandusky's PDC experiment
should not suffer from tnis ambiguity; the experimental values of projectile
location as a function of time would provide a unique time-dependent bounditry
condition for the models. Different initial wave strengths could be gonerated by
varying the initial speed of the projectile. However, the original PDC experiment
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would have to be modified by the addition of one or more pressure tranoducers
at fixed locations along the tube length. These would provide time-history of
stress in the compacted aggregate as the event developed, and help distinguish
among various model predictions. Thus, the current workshop extends the theme
of the Oct 1986 workshop [2] to a more difficult problem.

A novel aspect of the current workshop is that the modelers were asked to
make true predictions, not just simulate known data. Although the PDC
experiments were run in advance, the results were not released until the second
day of the workshop. Thus all the modelers (including the chairman) were
"blind". Approximately four months in advance, each modeler was given the
initial conditions, the time-dependent boundary condition, and properties of the
granular propellant. There were four experiments involving two different
materials. The modeler was asked to predict the compaction wave locus, and the
stress time-history which would be seen by gages at two fixed locations in the
chamber. Six individuals agreed to be subjected to this torture, and five brought
predictions to the Workshop. They were:

M. R. Baer, Sandia National Laboratory / Albuquerque
K. Kim and T. Hsieh, Naval Surface Warfare Center / White Oak

Laboratory
D. E. Kooker, U. S. Army Ballistic Research Laboratory
C. F. Price, Naval Weapons Center / China Lake
A. M. Weston, Brobeck Corp / Lawrence Livermore National Laboratory

The firt day c'- the workshep was devoted to presentation of the models, and
comparison of the various predictions with each other. H. W. Sandusky
(NSWC/WO) unveiled the experimental data on the second day, and the remainder
of the time was spent comparing model predictions with this data.

[Experiment by Sandusky et. al./NSWC]
Wall Pressure (Stress) - Time History

- 76.2 mm

38.1 mm 
Alum or Steel Tube

*Granular Propellant

II II II II II 11 II II

Ionization Pins or Self-Shorting ProbesGiven:
(a) propellant properties -

QS compaction, grain size, burning rate, etc.

(b) projectile time-history

Predict Time-History: (1) Compaction Front Location

(2) Pressure at. Two Fixed Locations

Fig. 1 - Schematic of Modeling Problem and NSWC Experiment [3].
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II. PROBLEM DESCRIPTION

The modeling exercise, shown schematically in Fig. 1, is to simulate
Sandusky's Piston-Driven-Compaction (PDC) experiment in which a quiescent
granular sample is confined in an aluminum or heavy-wall steel tube (25.4 mim
ID), and then subjected to impact by a cylindrical blunt-face Lexan projectile
(300 mm long by 25.4 mm in diameter). Diagnostics include:

(a) ionization pins and/or self-shorting probes at uniform intervals along the
length of the tube,

(b) microwave interferometry through the downstream end of the tube
(looking toward the impacted end), and

(c) flush-mounted pressure transd,,cers in the tube wall at 38.1 mm and 76.2
mm from the impacted end.

The combination of (a) and (b) serves to locate the leading compaction front as a
function of time. Further, the location of the projectile face after impact can be
determined by the position of scribe lines on the cylindrical projectile
photographed through a slit in the tube wall near the impacted end; this provides
the time-dependent boundary condition for the modelers. More detail about this
series of experiments can be found in Sandusky et. al. [3]. As the basis for this
workshop, there were four PDC runs involving two different ball propellants. Two
primary reasons motivated the selection of these materials; (1) compaction of an
aggregate involves plastic deformation of grains [4], but not fracture [51, and (2)
they are nearly spherical particles which might be expected to form a regular
lattice which may be amenable to analysis 161 Properties of both propellants are
listed in Table I.

TABLE I. - PROPELLANT PROPERTIES

Propellant Name WC-140 TS-3659

Composition:
NC (nitrogen content = 13.05%) 98.53% 76.98%
NG 0.00% 21.57%
Stabilizer/Additive 1.47% --
Diphenylamine -- 1.14%
Dinitrotoluene -- 0.31%

Theoretical Maximum Density (g/cc) 1.65 1.64

Heat of Explosion (cal/g, experimental) 919 1104

Nominal Particle Size (im) 411 434
(spheres & "Jelly beans") (spheres)

11



Information Supplied to Modelers

(A) From the PDC Experiment:

The initial conditions for the modeling exercises were taken directly from the
NSWC experiments [3]. Listed in Table II below are values for tube length (L),
initial density (%TMD 0 ), the projectile velocity (V ) just before impact, and the
initial particle velocity (u) and compaction wave speed (U) just after impact. Of
course, the values of particle velocity (the velocity of the projectile face after
impact) and compaction wave speed will not necessarily remain constant.
However, the modeler was also given the location of the projectile as a function
of time after impact which could be used as a "piston" boundary condition; this
avoids all the uncertainties associated with a description of the actual impact
event.

Sandusky's [7 original PDC experiment performed in a Lexan tube produced
the correlation "r At = constant", where r is a measure of the stress in the
compacted solid phase and At is the time interval after impact before the
appearance of visible flame (usually in material adjacent to the projectile face).
It was intended that this modeling exercise would provide values of At for each
propellant, which the the modelers could use to help calibrate parameters in their
reaction models. Several PDC runs were made in a Lexan tube with TS-3659
propellant, but the camera records showed no evidence of visible light; other
observations, however, clearly indicated that reaction was underway This
"negative" finding may have important implications concerning the extent and/or
type of reaction which begins the event. As a substitute in the four modeling
problems, Sandusky examined both gage records and estimated the time at which
rapid pressurization occurred. These two points in the x-t plane were used to
linearly extrapolate back to the location of the projectile face. The value of time
at the intersection defined a "At", the time interval before the onset of rapid
pressurization (not the appearance of visible flame). The modelers were provided
a value (in one case, a range of values) of "At" for each of the problems.

TABLE II. - INITIAL CONDITIONS FOR PDC MODELING PROBLEMS

PROPELLANT: TS-3659

Problem (PDC name) %TMD 0  L(mn) Tube V p(ms) u(mls) U(mls)

#1 PDC-80 60.2 101.7 Alum 160 127 494
#2 PDC-81 60.1 146.8 Steel 237 192 534
#3 PDC-82 60.1 146.8 Steel 300 216 557

PROPELLANT: WC-140

#4 PnC-M30 60.5 146.8 Steel Z1O 161 563
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(B) Quasi-Static Compaction Data:

Current models of compacted granular material are not yet capable of
predicting the state of stress (including porosity) in the compressed aggregate. All
of the theories involve parameters which must be calibrated by matching
experimental data. For this purpose, quasi-static compaction experiments were
performed over a range of mixture densities on both ball propellants using the
double-piston in cylinder apparatus discussed in Campbell, Elban and Coyne [8].
Data supplied to the modelers included axial stress, radial stress, force applied to
the driving ram, force transmitted to the passive ram, and the length of the
sample volume. Differences between applied and transmitted force (along with the
length measurement) allowed computation of the wall friction force. Determination
of porosity required the modeler to estimate the compressibility of the solid
material. For more detail on the experiment, see Sandusky et. al. [3].

(C) Propellant Ignition and Burning Rate Data:

A reasonable description of the burning rate of single-base WC-140
propellant over the pressure range 100 psi - 25 Kpsi was provided by a
combination of recent strand burner data obtained by Price and Atwood [9]
supplemented with BRL [101 closed-bomb data. Reference [9] also made available
some recent ignition data generated from both arc image and CO 2 laser sources.
For the double-base propellant TS-3659, burning rate information was incomplete.
Strand burner data were nonexistent. This exercise relied entirely on NWC/China
Lake closed-bomb data [11]. However, as is typical of the closed bomb, rates
below approximately 2-3 Kpsi show the anomolous "tail off". Without low
pressure strand data, the modelers were left to guess the rates at lower pressure,
using the behavior of WC-140 as a guide. At the moment, there are no
estimates of how sensitive the wave acceleration process is to variations in low
pressure burning rate.

(D) Compressibility of TMD Propellant:

Although Hugoniot curves have been determined for many inert and explosive
compounds, no information could be found for either WC-140 or TS-3659
propellant. As a substitute, some Russian data [121 for N-powder with a
composition of approximately 40% NG in NC was provided, viz.,

Vs (km/s) = 1.7 + 1.85 * us (km/s).

With 40% NG, this material will be slightly softer than either WC-140 or
TS-3659. but the influence on the present modeling computations should be
minimal.

Given this information, the modeler was asked in each case to provide
predictions for (1) compaction wave locus, and (2) the time-history of whatever
stress component a wall-mounted transducer should respond to at both gage
locations. Because of complications involved with wave reflection from an end
plug which was not well characterized, it was agreed that the computational
problem will terminate when the leading compaction front strikes the downstream
boundary (the far end of the PDC tube).

13



III. DISCUSSION OF RESULTS

Although the five models employed here were designed to solve a similar
problem, there are many important differences which lead to a diversity of
predictions. Unfortunately, the space limitations of this workshop summary will
not permit a detailed discussion of the assumptions, mathematical formulation, and
numerical solution techniques in each model. To help orient the reader, the
Appendix contains a schematic overview of important aspects of each model.
These schematics are not intended as a complete picture of the model; the cited
references should be consulted for further detail, or questions should be addressed
to the individual modeler in cases where documentation is not yet available. In
the figures below whirh show comparison of model predictions to the experimental
data of Sandusky et. al. [31, not all of the models are represented on each figure.
This occurs because not all of the modelers brought predictions for all four
exercises. Table III below can be used as a guide.

TABLE III. - SUMMARY OF CONTRIBUTIONS

JANNAF PSHS WORKSHOP

"Model Predictions of the PDC Experiment"
25-26 October 1988, NASA/MSFC. Huntsville, AL

PREDICTIONS FOR- PDC-80 PDC-81 PDC-82 PDC-M30

CONTRIBUTOR # 1 #2 #3 #4

Baer / SNLA Yes Yes Yes Yes

Kim & Hsieh/NSWC Yes Yes

Kooker / BRL Yes Yes Yes Yes

Price / NWC Yes Yes Yes Yes

Weston / LLNL Yes

Figures 2 through 9 show the comparison of modeling predictions with the
experimental data. The figures are arranged in pairs; Fig. 2 is the compaction
wave locus and Fig. 3 contains the two transducer time-histories for PDC-80
(Problem #1). Figures 4 and 5 pertain to PDC-81 (Problem #2), etc. In each
figure, the top portion (a) is only the experimental data, and the bottom portion
(b) shows the comparison of the model predictions with that data. Many of the
comparison figures [(b) portion] are busy and somewhat confusing. A vertical line
with the notation "end of problem" appears on each figure, and denotes the value
of time at which the experimental data indicate the leading compaction front
arrived at the end of the PDC tube. Beyond this value of time, the
computational problem is over.
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The nature of this problem is deceptive. The initial impact generates a
strong compaction wave which propagates into the quiescent bed. Taking a
simplistic view, not much happens behind this wave for a certain time interval;
then suddenly the pressure can rise dramatically. The deception is in the region
behind the compaction front where the pressure transducers may indicate that not
much is happening. In fact there is apparently an intense competition between
sources of heat generation (reactions) and heat loss mechanisms. The outcome of
the competition produces the "timing" of a runaway (if one occurs). On the basis
of the modeling predictions, a small change in a reaction parameter can lead to a
major change in the timing of the runaway. Probably as no surprise, none of
the models got everything "correct". A major conclusion from the Oct 1986
Workshop [2] is reinforced by the results from the present comparisons;
compaction wave speed (and hence location) is a forgiving parameter. A close
match of compaction wave locus does not necessarily mean a close match with
the pressure transducers,

PDC-80 (Problem #1)

PDC-80, based on TS-3659 propellant, was run in the short tube (101.7 mm)
and had the slowest initial projectile speed (160 m/s). As shown in Fig. 2a, the
compaction wave locus is determined by two points dictated by the reporting time
from each pressure transducer; PDC-80 was the only run which did not have
r-icrowave interferometry. As shown in Fig. 2b, alFlree predictions are close to
the first data point, with some divergence toward the latter stages of propagation.
The sudden "turn up" predicted by Baer (SNLA) cannot be confirmed with the
two data points available. The "slow down" predicted by Price (NWC) may be
partly the result of his time-dependent boundary condition. In all his
computations, Price (NWC) elected to use a lumped-mass solution of projectile
impact on the granular bed, rather than employ the given experimental projectile
location as a function of time as a "piston" boundary condition. This solution
predicted a time-dependent location of the projectile face which differed from the
experimental observation.

The time-history from both pressure transducers is shown in Fig. 3a. Both
gages confirm the onset of rapid pressurization, although the rapid rise of gage
#2 occurs beyond the time (-204 its) at which the leading compaction front
reached the end of the PDC tube. There are two common features in the gage
responses from all four PDC runs. The first one is clearly evident here in the
record from Gage #2, and to a lesser extent from Gage #1. This is the almost
linear "decay" of the report value after the gage has been uncovered, before the
beginning of rapid pressurization presumeably due to significant reaction [see Fig.
10 alsol. None of the models predicted this behavior. There was considerable
discussion a-b-ut the-ossible physics involve-, as well as the possibility of gage
anomalies. One suggestion was rate-dependent stress behavior in the suddenly
compacted aggregate, which might influence the deviator stress component and
hence play a role in the sti ess value which is being measured by the
wall-mounted transducer. The issue was not resolved. The second feature is the
smaller magnitude of initial response (and subsequent values before reaction
begins) reported by Gage #2 compared to Gage #1. This is most likely the
influence of wall boundary friction. Of the three model calculations illustrated in
Fig. 3b, Price's (NWC) model was the only one to account for wall friction and it
predicts this effect. Figure 3a also illustrates another trend when comparing
model predictions with the transducer records. Both Kooker (BRL) and Baer
(SNLA) predict an initial level of gage response which exceeds the experimental
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value. The mathematical formulation in all three models (at the time of the
Workshop) treated the stress tensor of the compressed aggregate as a pressure,
and ignored deviator components. Both Kooker (BRL) and Baer (SNLA) based
their predictions for gage response on this value of mixture pressure. However,
the quasi-static compaction data [31 for TS-3659 distinctly shows the presence of
a deviator component which leads to a significant reduction in the value of radial
stress. The data [31 indicate that the ratio of the radial stress component to the
axial component varies with the state of compaction. Price (NWC) chose an
average value of 0.6 as representative of the data, and multiplied his predictions
for pressure by this value to get gage response. As the comparison in Fig. 3b
indicates, these values are more realistic. The important implication is that the
dynamically-formed aggregate in both materials apparently supports deviator s~ress
components which are similar to the quasi-static stress state. The wall-mounted
transducers are responding to the radial component.

Compaction wave thickness can also be estimated from the transducer
records, assuming wave speed is known. For example, Gage #1 in Fig. 3
indicates a rise time of approximately 12 us which implies a wave thickness of 6
mm if the speed is taken as 0.5 mm/Us. Recall that Sandusky's [71 earlier work
utilizing flash radiography in a Lexan tube estimated the wave thickness as the
distance between two tracer wires, i.e., 6.35 mm. Model predictions of wave
thickness (or gage rise time) are significantly influenced by the equation
formulation and the numerical solution technique. If the equation system neglects
the diffusive effects of Fourier heat conduction (not heat transfer between phases),
viscous stresses (not the drag force between phases), and rate-dependent resistance
forces during porosity adjustments in the aggregate (often modeled with a
"compaction viscosity"), then the mathematical solution for a compaction wave is a
shock wave with zero thickness. If the numerical soluion predicts otherwise, the
finite thickness is due to artificial diffusion added by the numerical integration
technique. Baer's (SNLA) formulation, which does account for rate-dependent
porosity adjustments and hence includes a physical basis for a finite thickness
wave, predicts a gage rise behavior quite similar to the experimental data. This
is a definite achievement. Kooker (BRL) assumes instantaneous adjustment (zero
compaction viscosity) to the equilibrium stress state and then tracks compaction
waves as infinitesimally-thin shock waves with the method-of-characteristics; the
predictions show a zero-thickness wave which passes the gage location near the
mid-point of the rise time. Price's (NWC) formulation also neglects rate-
dependent resistance (other than inertial forces) to porosity change, but the
solution predicts a wave thickness somewhat greater than the data.

Both gage records in Fig. 3 confirm that some type of reaction process was
under way near the end of this PDC experiment. The comparisons in Fig. 3b
also testify to the difficulty the models had in predicting the timing of this
pressure rise. The input data supplied to the modelers was insufficient to
calibrate all the "reaction parameters" in the various formulations. The remaining
values had to be "guessed", or estimated by comparison to other available data on
similar materials. Unfortunately, a slight variation in some of these values could
often mean the difference between benign behavior and a runaway. As seen in
Fig. 3b, Baer's (SNLA) computations show a premature runaway, Kooker's (BRL)
computations show a turn-up closer to the gage records (probably fortuitous), and
Price's (NWC) computations indicate no runaway.
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PDC-81 (Problem #2)

PDC-81 is also based on TS-3659 propellant, but was run in the 146.8 mm
long heavy-wall steel tube using a higher initial projectile speed of 237 m/s. The
leading compaction front locus, as shown in Fig. 4a, is defined in detail by the
data from the microwave interferometer. Compaction wave speed is virtually
constant at 534 m/s until late in the run when it abruptly increases to 1800 m/s.
Comparing model predictions to this data in Fig. 4b shows that all four
calculations are close to the experiment until approximately half way down the
tube. Baer's (SNLA) model prematurely predicts an abrupt increase in speed, but
the new velocity is nearly equal to what the experiment will eventually do. This
is encouraging. Again, timing of the event can be difficult to predict. Kim and
Hsieh's (NSWC) model predicts a violent runaway event with the wave about
midway down the tube, and this halts the calculation (see the predicted pressure
history in Fig. 5b). Kooker's (BRL) model predicts a mild turn-up just as the
wave approaches the end of the tube, and Price's (NWC) model does not yet
show the effects of reaction.

The model predictions for wall stress time-history are compared to the
transducer records in Fig. 5. For each of the four models, the predicted behavior
of the compaction front locus discussed above is mirrored in their stress
predictions. Although the overall slopes of a couple of the runaway curves are
similar to the data, the predicted timing of the event is poor. Some discussion
in the workshop arose over the "plateau" behavior (near 200 MPa) of the Gage
#1 response between 180-210 us. The question was what mechanism is resposible
for the 20-30 us "pause" in the growth of pressure? One speculation was an
anomaly in "hot spot" compressive combustion. Another speculation was the
influence of expansion waves generated by a slow down (or reversal of direction?)
of the projectile, i.e., a loss of confinement. This second speculation highlights a
nagging problem in these exercises. Because of experimental difficulties, the
position of the projectile, after impact, is sometimes known only during the early
time of the experiment (in PDC-81, only up to 92 us). Furthermore, in those
runs based on higher projcctile impact speeds, there is little doubt that the Lexan
projectile deforms; Sandusky attempts to account for this deformation when
interpreting the position of the scribe lines on the body of the projectile. Thus,
(a) the modeler may not have the complete time-dependent boundary condition,
and (b) its accuracy is in question. Sandusky suggested that any future
experiments of this type should be run with an aluminum projectile.

PDC-82 (Problem #3)

PDC-82 is still based on TS-3659 propellant confined in the 146.8 mm long
heavy-wall steel tube, but involved a 300 m/s impact. This was a more
energetic event which produced an increase in speed to 2110 m/s as shown in Fig.
6 by the compaction front locus defined by the microwave interferometry. The
model predictions for compaction front locus are fairly close to the data until the
vicinity of the turn. The two closest predictions were Price's (NWC) model which
turned up early and Baer's (SNLA) model which was slightly late, but both
suggested a speed in the correct range. Kim and Hsieh's (NSWC) model did not
show a significant change in wave speed, but the pressure field is increasing
dramatically at the end of the computation. Kooker's (BRL) model ran into
numerical difficulties in attempting the turn, which terminated the calculation.
(text continues on page 26).
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The transducer records from PDC-82 shown in Fig. 7 confirm the strength
of the combustion event. Gage #2 sees a strong shock-like wave, ;vhile Gage #1
displays some unusual undulations. None of the models came very close to these
records. Possibly projectile motion after impact has led to a complicated system
of expansion waves which influence the response at Gage #1; Sandusky (NSWC)
commented that the reaction in this run was violent enough to virtually force the
projectile back out of the tube.

PDC-M30 (Problem #4)

PDC-M30 changed propellant to the less energetic single-base WC-140, but
was conducted in the 146.8 mm long heavy-wall steel tube. Projectile impact
speed was 210 m/s. Compaction front locus is displayed in Fig. 8, which shows
an unusual behavior after approximately 270 us as the compacted bed forces the
end plug out of the tube. The microwave interferometry has tracked the motion
of a second wave front (apparently driven by combustion) in the bed as it is
being expelled. As a conciliatory gesture, the modelers were not held accountable
for this late time behavior. Up to 270 us, the compaction front moves at nearly
constant speed, which most of the models predicted until the onset of significant
reaction. Price (NWC) offered two predictions which differed only by a slight
change in one of his reaction parameters; the influence on the predicted wave
locus was substantial.

The transducer time-histories are compared to the model predictions in Fig.
9. Unfortunately, the significant rise seen by both gages occurred after 270 us
when the compaction front reached the downstream end of the tube. Baer
(SNLA) and Kooker (BRL) were close to the reporting time of the gages, while
Price's (NWC) "number 1" prediction gives a better representation of the low
magnitudes from both transducers Isee Fig. 10]. Weston's (LLNL) predictions are
compared to the data separately in Fig. 11 and seem to show evidence of an
instability (Weston discovered an error in his gas-phase equation-of-state after the
Workshop). None of the predictions could be considered as accurate. Again,
timing of the runaway pressure field is a delicate prediction.

IV. CONCLUDING REMARKS

During the course of the Workshop, a number of discussions arose about the
behavior of the strong compaction wave and how the theories are modeling its
role in initiating reaction. Apparently there are many cases where the
experimental value of compaction wave speed exceeds the model prediction for an
inert wave, when the model is based on rate-independent porosity change which is
calibrated with the quasi-static compaction data. The question of what
mechanism(s) is responsible for the increase in speed seems to have provoked two
.,'hools of thought. The first one suggests that a rate-dependent visco-plastic
material response of the aggregate would produce a stiffer material and thus
support a higher wave speed. This dynamic stress state would look nearly
time-invariant to the PDC experiment if the aggregate's characteristic relaxation
time is large enough. The question of how this behavior would influence the
compaction wave thickness has not been answered. The question of how the
reaction begins in the compressed aggregate still remains. The second school of
thought is that these compaction fronts are not inert; the high strain rate in the
wave front itself begins the reaction process. Of course, many new questions
now arise concerning what type of reaction begins and how much energy is
released. There is little consensus from this point on. There is also the
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possibility that the real compactio;i wave is reactive and exhibits rate-dependent
material behavior.

Since a number of the modelers are assuming that the compaction wave is
not inert, there were additional discussions about what reaction is being modeled.
There appear to be two broad categories here, (a) condensed-phase "hot spot"
reactions, and (b) gas-phase reactions. Some models include both. There was no
consensus on how to model hot spot reactions. A couple of the models which
include gas-phase reactions assume that the reactants originate as products from
the condensed-phase reactions. Postulating the existence of reactive gas-phase
species leads to an interesting question about the extent of heat release in the
condensed-phase reactions. The early PDC experiments on TS-3659 in a Lexan
tube showed no indication of visible radiation, which would seem to constrain
gas-phase temperatures well below an equilibrium flame temperature. Thus the
sketchy evidence so far would suggest the initial gas-phase reactants, if they
exist, are intermediate products which then could react further at some later
time. Release of this final heat of combustion would be a contributor to ignition
of the remaining portion of the compressed aggregate.

The results of the Workshop might be summarized with the following:

(1) The compaction front locus (position vs. time) and hence compaction wave
speed are forgiving parameters. Agreement with this data does not guarantee
that the model can predict the pressure transducer records.

(2) The impact-generated compaction wave apparently sets off an intense
competition in the compressed aggregate between various reaction sources and heat
loss; the outcome determines the time of a runaway pressure field. Current
models have difficulty making this prediction. Besides the numerical solution
complexities, the primary reason is unortainty about the reaction sources, how to
model these sources and then calibrate the inevitable unknown parameters.

(3) When comparing model predictions with the PDC experimental data:

(a) several of the models were able to predict the general wave mechanics
(time at which each gage reports, wave thickness, etc.)

(b) the wall-mounted transducer data show an almost linear "decay" after
the initial report value, until the onset of significant reaction. None of the
models predict this, and it has not been explained.

(c) the initial value reported by the second transducer is less than that
reported by the first transducer. Wall-boundary friction is the likely cause.
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APPENDIX - SCHEMATIC DESCRIPTION OF MODELS
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BAER (SNLA) [see Ref. 131

o Compressible solid phase.

o Zero wall friction.

o Equilibrium stress state, 3, is fit to the combined dynamic data (PDC) and
quasi-static compaction data (Elban, et. al.)

o Does not account for stress deviators (each phase represented with a pressure).

o Finite-rate porosity change based on "compaction viscosity" - leads to
prediction of finite-thickness compaction wave.

Mass Source Term - Compressive Reaction + Grain Burning

0- 0 only when T. > T
ps(Os - Os0) heat transfer to cold solid

T H  determines Ti(t)]

Compressive reaction -

o 1 / -rH = constant * P 2

o Energy released in reaction depends upon delay time " I "

AE = Q + (LE R - Q) H(I-1) where H(I-1) =1 when I > 1.

o Delay time " I " is tracked along gas-phase streamlines, such that

D( I )/D(t ) = 1 / rdelay where 1delay = constant Pm

Pressure or Stress

ain Burning

Compressive reaction continues

but releases low level of AE
Ignto r

of Grain S I

Compressive
Full LE is released Reaction is
in reaction Initiated in

Wave Front

Distance
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HSIEH & KIM (NSWC) [see Ref. 141

o Incompressible solid phase.

o Zero wall friction.

o Equilibrium stress state is fit to quasi-static compaction data.

o Does not account for stress deviators (hydrostatic solid stress and gas pressure
only).

o No rate-dependent resistance to porosity change ("compaction viscosity" = 0).

o Drag force between solid and gas phases was neglected in Workshop
computations.

Uses GOUGH'S "XNOVAK" Code with modifications

Mass Source Term = Grain Burning

o Single step reaction releases full chemical energy of solid phase
,

o Onset of this reaction is delayed until achieving ', where

i2
= dt, for each Eulerian control volume

* ,r2t*

the value of ' follows from Sandusky's correlation, =r 2 At = constant =

Pressure or Stress

Grain Ignition of grains;

Burning delay controlled by

0 Inert
Combustion Compaction

Front

Distance
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KOOKER (BRL) [see Ref. 15]

o Compressible solid phase.

o Zero wall friction.

o Equilibrium stress state is fit to quasi-static compaction data.

o No explicit use of stress deviators (each phase represented with a pressure).

o Instantaneous porosity adjustment (compaction viscosity = 0) to ,nquilibrium
stress state.

o Compaction waves are shock waves with zero thickness (method-of-
characteristics solution)

o Compaction wave front induces small amount of reaction (produces gas-phase
intermediate products)

Mass Source Term - Gas-Phase Reaction + Grain Burning

X 0 only when T. > T*
heat transfer to cold solid

determines Ti(t) j
Gas-phase reaction "begins" with intermediate products from wave-induced reaction.

o Reaction is delayed until tig < 0

D(t ig)/D(t ) = -1, where tig (0) = tig comes from P m t = constant

o Amount of energy released is a function of gas-phase temperature, Tg

D(Ae gr)/D(tg) = constant * exp(-constant ] T )

Pressure or Stress

Grain Burning
/

/

Gas-phase reaction Equilibrium stress-
begins when tig<O state accounting

. . for gas-phase
products

of Grain s

Energy released in gas-phase Compaction

reaction increases with Tg wave induces

small amount
of reaction

Distance
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PRICE (NWC) [see Ref. 16]

o Compressible solid phase.

o Accounts for wall friction.

o Equilibrium stress state is fit to quasi-static compaction data.

o Mixture stress tensor is a pressure, but intragranular stress is function of
parameters called shear modulus, bulk modulus, etc. [At Workshop, reported
radial stress = 0.6 * mixture pressure.]

o No rate-dependent resistance to porosity change ("compaction viscosity" = 0)
other than inertial forces.

Heavily Modified Version of Joint Venture Two-Phase Flow Code (-- roots to
Krier, et. al.)

No Artificial Distinction Between Ignition & Transient Combustion
All Reaction & Energy Release are Incorporated into "Two-Path Kinetics"

.-
W 

,N s 
W_ ,SOLID 0e exoLA&."C flame-UC

eic erfto' )
Pressure or Stress

The work of compression is
deposited as a flux of energy
on a portion of the surface of
the particles, which heats the
solid and begins the "Two-Path"
system of reactions

Result of
"Two-Path"
Kinetics

Distance
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WESTON (Brobeck/LLNL) [see Ref. 171

o Compressible solid phase.

o Accounts for wall friction.

o Equilibrium stress state is fit to quasi-static compaction data.

o Extensive analysis based on stress deviators.

o No rate-dependent resistance to porosity change ("compaction viscosity" = 0).

Modified "R-DUCT" Model

Mass Source Term = Gas-Phase Reaction + Grain Burning

Xh 0 only when T. > T

heat transfer to cold solid

Gas-Phase Reaction -
determines Ti(t) ]

o Reaction releases full chemical energy of solid phase.

o Delay time before onset of reaction is controlled by parameters fit to
"ODTX" data.

plus
o An additional reaction in the Icading compaction front generates some gas,

according to

Production rate = constant * strength of wave * compaction rate at
local cell

Pressure or Stress

Grain Burning

Gas-phase reaction begins - delay time
controlled by fit, to ODTX data

Surfatce area of

"'Duts" ig-nited Some Combustion
Gases are
Produced in

Wave Front

Distance
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